Question Number	Answer		Mark
1 (a)	Use of $\mathrm{R}=\mathrm{V} / \mathrm{I}$ (for current) Use of sum of e.m.f. $=$ sum of p.d.s Or use of $\mathcal{E}=V+I r$ $r=100000 \Omega \text { or } 100 \mathrm{k} \Omega \text { or } 1 \times 10^{5} \Omega$ (Accept valid alternative methods based on potential divider) Example of calculation $\begin{aligned} & I=0.018 \mathrm{~V} / 4700 \Omega=3.8 \times 10^{-6} \mathrm{~A} \\ & 0.4 \mathrm{~V}=0.018 \mathrm{~V}+\left(3.8 \times 10^{-6} \mathrm{~A} \times r\right) \\ & r=100000 \Omega \end{aligned}$	(1) (1) (1)	3
1 (b)	Use of power $=$ radiation flux \times area Use of an electrical power equation Use of efficiency equation Efficiency $=12 \%$ (Full ecf for current from (a)) Example of calculation $\begin{aligned} & \text { power }=1.5 \times 10^{-3} \mathrm{~W} \mathrm{~m} \\ & \text { power }=I V=3.9 \times 10^{-4} \mathrm{~m}^{2}=5.85 \times 10^{-7} \mathrm{~W} \\ & \text { Efficiency }=6.84 \times 10^{-6} \mathrm{~A} \times 0.018 \mathrm{~V}=6.84 \times 10^{-8} \mathrm{~W} / 5.85 \times 10^{-7} \mathrm{~W}=0.12 \mathrm{OR} 12 \% \end{aligned}$	(1) (1) (1) (1)	4
	Total for question		7

Question Number	Answer		Mark
2(a)	The (maximum) length is (directly) proportional to the area	(1)	1
2(b)(i)	$\begin{aligned} & \text { Use of } \rho l / A=R \\ & R=1.34(\Omega) \end{aligned}$ Example of calculation $\begin{aligned} & R=1.68 \times 10^{-8} \Omega \mathrm{~m} \times 80 \mathrm{~m} \div 1.0 \times 10^{-6} \mathrm{~m}^{2} \\ & R=1.34 \Omega \end{aligned}$	(1) (1)	2
2(b)(ii)	Use of $P=I^{2} R$ $P=160 \mathrm{~W}$ allow ecf from (i) Example of calculation $\begin{aligned} & P=(11 \mathrm{~A})^{2} \times 1.34 \Omega \\ & P=162 \mathrm{~W}(157 \mathrm{~W} \text { if they use } 1.3 \Omega) \end{aligned}$	(1) (1)	2
2(b)(iii)	Use of $V=I R \quad$ Or use of $P=V I$ Or use of $P=V^{2} / R$ $V=15 \mathrm{~V}$ allow ecf from (i) and/or (ii) Example of calculation $V=11 \mathrm{~A} \times 1.34 \Omega=14.7 \mathrm{~V}$ (14.3 V if 1.3Ω is used)	(1) (1)	2
2(c)	To prevent (use of a cable with) resistance that is too large (Accept answers that refer to maintaining or not exceeding a resistance of about 1.3Ω) Meaning more energy / power / p.d. available for the shredder	(1) (1)	2
	Total for Question		9

Question Number	Answer		Mark
3(a)	```Use of \(W=V I t\) \(W=69000(\mathrm{~J})\) Use of efficiency \(=(\) useful energy \(/\) total energy \()(x 100 \%)\) Efficiency \(=0.42\) (or 42\%) Or Use of \(P=I V\) Use of \(P=W / t\) (to calculate rate of increase of internal energy of water) Use of efficiency \(=\) (output power / input power) \((\) x 100\%) Efficiency \(=0.42\) (or 42\%) Example of calculation \(W=5.0 \mathrm{~A} \times 230 \mathrm{~V} \times 60 \mathrm{~s}=69000 \mathrm{~J}\) Efficiency \(=29000 \mathrm{~J} / 69000 \mathrm{~J}\) \(=0.42\)```	(1) (1)	4
3(b)	Human body contains water molecules Or body has same structure as food So cells/tissues would gain internal energy (Accept cells/tissues would be heated)	(1) (1)	2
3(c) (i)	Waves spread out After passing through a gap Or after passing around an obstacle	(1) (1)	2
3(c)(ii)	Use of $c=f \lambda$ with $c=3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ $\lambda=0.12 \mathrm{~m}$ Example of calculation $\begin{aligned} & \lambda=3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \div 2.5 \times 10^{9} \mathrm{~Hz} \\ & \lambda=0.12 \mathrm{~m} \end{aligned}$	(1) (1)	2
3(c)(iii)	Diameter $=2 \mathrm{~mm}$	(1)	1
*3(c)(iv)	(QWC - Work must be clear and organised in a logical manner using technical wording where appropriate) Diffraction greatest when wavelength is about the same as gap size Diameter of holes much greater than wavelength of light and diameter of holes less than microwave wavelength so no/little diffraction of light takes place Or so microwave radiation still diffracted through large angle but intensity is very small. MP3 must follow on from relevant part of MP2	(1) (1) (1)	3
	Total for Question		14

Question Number	Answer	Mark
$\mathbf{4}$	(high resistance) so very little /negligible/zero current in the voltmeter Or because otherwise a current would pass through the voltmeter Or so the total resistance of the parallel combination isn't changed Or because otherwise total resistance of parallel combination would be reduced	(1)
because that would change /increase the current in the ammeter		
Or		
because that would mean the current through the ammeter was different		
to (larger than) the current through the component		
. Total for question	(1)	$\mathbf{2}$
		$\mathbf{2}$

Question Number	Answer		Mark
5(a)(i)	Use of $P=I V$ Power $=2900 \mathrm{~W}$ Example of calculation Power $=12.5 \mathrm{~A} \times 230 \mathrm{~V}=2875 \mathrm{~W}$	$\begin{aligned} & (1) \\ & (1) \end{aligned}$	2
5(a)(ii)	$P=E / t$ Energy $=400000 \mathrm{~J}($ ecf from (i) $)$ Example of calculation $\text { Energy }=2875 \mathrm{~W} \times 140 \mathrm{~s}=402500 \mathrm{~J}$	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \end{aligned}$	2
5(a)(iii)	Use of efficiency = useful energy output / total energy input $=0.87$ or 87% (ecf from (ii)) (do not award if $>100 \%$) Example of calculation Efficiency $=351000 \mathrm{~J} / 402500 \mathrm{~J}=0.87$ or 87%	$\begin{aligned} & \hline \mathbf{(1)} \\ & (\mathbf{1}) \end{aligned}$	2
5(b)	Some energy transferred by heating the kettle / element / wires / surroundings Or Some energy transferred as sound So not all of the (input) energy is transferred to (heating) the water Or so useful energy output is less than energy input Or only the energy heating the water is useful	(1) (1)	2
	Total for question		8

Question Number	Answer 6(a) Connected in series: because when one is removed there is a break in the circuit Or because when one is removed there is no current Or so the bulbs could have different p.d.s Not connected in parallel because: if one removed, still complete circuit (for the other) Or if one removed, still current (through the other) Or full mains voltage would have blown small bulb	Mark
	Use of $P=I V$ $I=0.17(\mathrm{~A})$ (at least 2 sf required) Example of calculation $40 \mathrm{~W}=I \times 230 \mathrm{~V}$ $I=0.17 \mathrm{~A}$	(1)

$\mathbf{6 (d)}$	Lower resistance (smaller current, so) lower temperature (so less vibration of lattice ions) Or (smaller current, so) smaller drift velocity	(1)	
fewer collisions of electrons with lattice ions Or less frequent collisions of electrons with lattice ions Less energy dissipation (as heat) O Or less ke lost in collisions	(1)	(1)	4
	Total for question		$\mathbf{1 5}$

Question Number	Answer		Mark
7(a)	Use of $P=V I$ Current $=0.021 \mathrm{~A}$ Example of calculation $\mathrm{I}=\frac{P}{V}=\frac{4.8}{230}=0.021 \mathrm{~A}$	$\begin{aligned} & \hline \text { (1) } \\ & \text { (1) } \end{aligned}$	2
7(b)(i)	Use of $P=V I$ to justify (numbers or symbols) $\begin{aligned} & \text { Examples } \\ & \begin{array}{l} P=V I, \text { so } \mathrm{W}=\mathrm{V} \mathrm{~A} \\ \text { Or } \mathrm{V}=\mathrm{JC}^{-1}, \mathrm{~A}=\mathrm{C} \mathrm{~s}^{-1} \text { so } \mathrm{V} \mathrm{~A}=\mathrm{J} \mathrm{C}^{-1} \times \mathrm{C} \mathrm{~s}^{-1}=\mathrm{J} \mathrm{~s}^{-1}=\mathrm{W} \\ \text { Or } 5 \mathrm{~V} \times 0.1 \mathrm{~A}=0.5 \mathrm{~W} \end{array} \end{aligned}$	(1)	1
7(b)(ii)	Efficiency $=\frac{0.5}{4.8}(\times 100)$ Efficiency $=10 \%$ or 0.1 Example of calculation Efficiency $=\frac{0.5}{4.8} \times 100$ Efficiency $=10.42 \%$	$\begin{aligned} & \mathbf{(1)} \\ & (1) \end{aligned}$	2
7(b) (iii)	Energy/power converted/wasted/transferred/lost to thermal or heat (energy) Or Energy/power lost due to resistance (allow internal resistance)	(1)	1
	Total for question		6

